La importancia de la Educación en Ingeniería 4.0 en la Cuarta Revolución Industrial
The importance of Engineering Education 4.0 in the Fourth Industrial Revolution
DOI:
https://doi.org/10.56712/latam.v6i2.3639Palabras clave:
educación en ingeniería 4.0, industria 4.0, tecnologías disruptivasResumen
La Industria 4.0 (I4.0) está revolucionando de forma y fondo los procesos productivos de las empresas y está transformando radicalmente el trabajo y los negocios. Para hacerle frente a los retos y desafíos de la Cuarta Revolución Industrial (4RI) se ha concebido el término “Educación 4.0” que estudia aquellos cambios necesarios que deben realizarse en los sistemas educativos para orientar las enseñanzas y los aprendizajes hacia la visión de la I4.0. La Educación en Ingeniería 4.0, que forma parte de la Educación 4.0, se concibe cuando los cambios se dirigen a la formación de los nuevos ingenieros que demanda el nuevo paradigma industrial. El objetivo del presente artículo es estudiar a grandes rasgos la visión de la Educación en Ingeniería 4.0 y describir algunos aspectos importantes sobre las nuevas competencias de los ingenieros que le harán frente a la 4RI. Se utilizó la metodología descriptiva-cualitativa para desarrollar la investigación. Se presentaron algunos estudios relacionados con la Educación en Ingeniería en la visión de la I4.0 aplicados a la Ingeniería Industrial, Ingeniería Mecánica e Ingeniería Mecatrónica. Se determinó que las aplicaciones de la I4.0 no son posibles sin la formación adecuada de los ingenieros y que es necesario que la Educación en Ingeniería implemente modelos pedagógicos actualizados, como la Educación Basada en Competencias y las Metodologías Activas, así como las tecnologías disruptivas, como la Inteligencia Artificial y las Tecnologías de la Información y Comunicación, en los procesos de la enseñanza y el aprendizaje para poder alinearse a la I4.0.
Descargas
Citas
Aziz, A. (2018). Education 4.0 Made Simple: Ideas for Teaching. International Journal of Education & Literacy Studies, 6(3), 92-98. DOI: https://doi.org/10.7575/aiac.ijels.v.6n.3p.92
Bongomin, O., Ocen, G.G., Oyondi, E., Musinguzi, A. y Omara, T. (2020). Exponential Disruptive Technologies and the Required Skills of Industry 4.0. Journal of Engineering, 20 (1), 1-17, 4280156. https://doi.org/10.1155/2020/4280156. DOI: https://doi.org/10.1155/2020/4280156
Buchi, G., Cugno, M., y Castagnoli, R. (2020). Smart factory performance and Industry 4.0. Technological Forecasting and Social Change, Vol. 150, 1-10. DOI: https://doi.org/10.1016/j.techfore.2019.119790
Carlos, M.A., Luque, L.F., Guerrero, H.A., Ornelas, G., Aguilar, Y. y González, L.E. (2021). Educational Mechatronics and Internet of Things: A Case Study on Dynamic Systems Using MEIoT Weather Station. Sensors, 21(181). https://doi.org/10.3390/s2101018 DOI: https://doi.org/10.3390/s21010181
Chakrabarti, S., Caratozzolo, P., Norgaard, B. y Sjoer, E. (2021). Preparing Engineers for Lifelong Learning in the Era of Industry 4.0, 2021 World Engineering Education Forum/Global Engineering Deans Council (WEEF/GEDC), Madrid, Spain, 518-523. DOI: https://doi.org/10.1109/WEEF/GEDC53299.2021.9657247
Chatzopoulos, A., Tzerachoglou, A., Priniotakis, G., Papoutsidakis, M., Drosos, C. y Symeonaki, E. (2023). Using STEM to Educate Engineers about Sustainability: A Case Study in Mechatronics Teaching and Building a Mobile Robot Using Upcycled and Recycled Materials. Sustainability, 15, 15187. https://doi.org/10.3390/su152115187 DOI: https://doi.org/10.3390/su152115187
Ciolacu, M., Svasta, P., Berg, W. y Popp, H. (2017). Education 4.0 for tall thin engineer in data driven society. In: IEEE 23rd international symposium SIITME, Constanta, Romania, 432–437. DOI: https://doi.org/10.1109/SIITME.2017.8259942
García, F., Plaza, P., Quintana, B., San Cristóbal, E., Gil, R., Pérez, C., Fernández, M. y Castro, M. (2021). Laboratories 4.0: Laboratories for Emerging Demands under Industry 4.0 Paradigm, 2021 IEEE Global Engineering Education Conference (EDUCON), Vienna, Austria, 903-909 DOI: https://doi.org/10.1109/EDUCON46332.2021.9454095
Gisi, P.J. (2024). The Dark Factory and the Future of Manufacturing: A Guide to Operational Efficiency and Competitiveness. New York: Routledge. DOI: https://doi.org/10.4324/9781032688152
Guc, F., Viola, J., y Chen, Y. (2021). Digital Twins Enabled Remote Laboratory Learning Experience for Mechatronics Education, 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 242-245. DOI: https://doi.org/10.1109/DTPI52967.2021.9540196
Guevara G. P., Verdesoto A.E. y Castro, N. E. (2020). Metodologías de investigación educativa (descriptivas, experimentales, participativas y de investigación-acción), RECIMUNDO, 4(3), 163-173. DOI: https://doi.org/10.26820/recimundo/4.(3).julio.2020.163-173
Gutiérrez, Y., Bustamante, R., Navarro, S.A., López, A.A., Molina, A. y Álvarez, I. (2021). A Challenge-Based Learning Experience in Industrial Engineering in the Framework of Education 4.0. Sustainability, 13, 9867. https://doi.org/10.3390/su13179867 DOI: https://doi.org/10.3390/su13179867
Hadgraft, R. G. y Kolmos, A. (2020). Emerging learning environments in engineering education. Australasian Journal of Engineering Education, 25 (1), pp. 3–16. DOI: https://doi.org/10.1080/22054952.2020.1713522
Hariharasudan, A. y Kot, S. (2018). A Scoping Review on Digital English and Education 4.0 for Industry 4.0, Social Sciences, 7, 227. Doi:10.3390/socsci7110227 DOI: https://doi.org/10.3390/socsci7110227
Hassan, A., Rault, V. y Truchot, P. (2018). Implementing of Project-Based and Skill Assessment Pedagogy in Mechatronics Course. In 2018 19th International Conference on Research and Education in Mechatronics (REM). IEEE, Delft, Netherlands, pp. 69-74. DOI: https://doi.org/10.1109/REM.2018.8421771
Hernandez, G.M., Habib, L., Garcia, F.A., Montemayor, F. (2019). Industry 4.0 and Engineering Education: An Analysis of Nine Technological Pillars Inclusion in Higher Educational Curriculum. In Best Practices in Manufacturing Processes (1st ed.); Springer.
Hernández, R., Fernández, C. y Baptista, P. (2014). Metodología de la investigación. México, McGraw Hill Education.
Himmetoglu, B., Aydug, D. y Bayrak, C. (2020). Education 4.0: Defining the teacher, the student, and the school manager aspects of the revolution. Turk. Online J. Distance Educ., 2, 12–28. DOI: https://doi.org/10.17718/tojde.770896
Ioniță, M., Mihailescu, B., Rachbauera, T., Hansen, C., Gheorghe, C. y Svasta, P. (2023). Fostering Engineering Education 4.0 Paradigm Facing the Pandemic and VUCA World. Procedia Comput. Sci. 217, 177–186. DOI: https://doi.org/10.1016/j.procs.2022.12.213
Jiménez, E. Ochoa, F.J., Luna, G., Beltrán, F. M., Jiménez, F. C., y Monteón, M. A. M. (2022). Competency-based Education of the Mechatronics Engineer in the Transition from Manufacturing 3.0 to Industry 4.0. 2nd IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 (ARCI’ 2022), 2-3 February 2022, Andorra la Vella, Andorra, 84-87.
Jiménez, E., Acosta, M., Luna, G., Lucero, B., Delfín, J.J. y García, L.A. (2019). Reverse Engineering and Straightforward Design as Tools to Improve the Teaching of Mechanical Engineering. In Industry Integrated Engineering and Computing Education, 1st ed.; Abdul, M., Bouras, A., Veillard, L., Eds.; Springer: Cham, Switzerland, 93–118. DOI: https://doi.org/10.1007/978-3-030-19139-9_7
Jimenez, E., Garcia, L.A., Amavizca, L.O., Wong, D.Y., Valdez, S., Mafara, M. (2023). Engineering Education 4.0 and Mechatronics. In Kaizen and Mechatronics, 1st ed.; Ramos, J.M., Vargas, J.E., Eds.; Asociación Mexicana de Mecatrónica A.C.: Querétaro, Mexico, 387–396.
Jiménez, E., Limón, P.A., Ambrosio, A., Ochoa, F.J., Delfín, J.J., Lucero, B. Martínez, V.M. (2024). Mechanics 4.0 and Mechanical Engineering Education. Machines, 12, 320. https://doi.org/10.3390/machines12050320 DOI: https://doi.org/10.3390/machines12050320
Koeppe, A., Hesser, D., Mundt, M., Bamer, F., Selzer, M., Markert, B. (2022). Mechanical 4.0. In Handbook Industry 4.0; Frenz, W., Ed.; Springer: Berlin/Heidelberg, Germany, 455–470. DOI: https://doi.org/10.1007/978-3-662-64448-5_23
Kohler, D. y Weisz, J.D. (2016). Industry 4.0: Les d´efis de la transformation num´erique du mod`ele industriel allemand [Industry 4.0: The Challenges of the Digital Transformation of the German Industrial Model]. Paris, La Documentation française.
Lee, E.A. (2008). Cyber Physical Systems: Design Challenges, Proc. 11th IEEE Int’l Symp. On Object and Component Oriented Real-Time Distributed Computing (ISORC 08), Orlando, FL, USA, 363–369. DOI: https://doi.org/10.1109/ISORC.2008.25
Lemstra, M. A. M. S., Quinaglia, E. A. y Mesquita, M. A. D. (2022). Industry 4.0 technologies in industrial engineering courses: a faculty survey in Brazil. International Journal of Engineering Education, 38 (5), 1458-1469.
Lesage, J., Brennan, R., Eaton, S.E., Moya, B., McDermott, B., Wiens, J. y Herrero, K. (2024). Exploring natural language processing in mechanical engineering education: Implications for academic integrity, International Journal of Mechanical Engineering Education. 52, (1), 88–105. DOI: 10.1177/03064190231166665 DOI: https://doi.org/10.1177/03064190231166665
Liu, Z., Lu, S. y Luo, J. (2024). Research on the Hybrid Teaching Mode of Mechanical Fundamentals in the Context of Artificial Intelligence. Journal of Artificial Intelligence Practice, 7(1), 154-161. DOI: https://doi.org/10.23977/jaip.2024.070123
Miranda, J., Navarrete, C., Noguez, J., Molina, J. M., Ramírez, M.S., Navarro, S.A., Bustamante, M.R., Rosas, J. B., Molina, A. (2021). The Core Components of Education 4.0 in Higher Education: Three Case Studies in Engineering Education, Computers & Electrical Engineering. 93, 107278. https://doi.org/10.1016/j.compeleceng.2021.107278 DOI: https://doi.org/10.1016/j.compeleceng.2021.107278
Neaga, I. (2019). Applying Industry 4.0 and Education 4.0 to Engineering Education, Proceedings 2019 Canadian Engineering Education Association (CEEA-ACEG19) Conference CEEA19, University of Ottawa, Canadá,1-6. DOI: https://doi.org/10.24908/pceea.vi0.13859
Prieto M. D., Sobrino Á. F., Soto L. R., Romero D., Biosca P. F. y Martínez L. R. (2019). Active Learning based Laboratory towards Engineering Education 4.0, 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 776-783. DOI: https://doi.org/10.1109/ETFA.2019.8869509
Rawboon, K., Yamazaki, A., Klomklieng, W. y Thanomsub, W. (2021). Future competencies for three demanding careers of industry 4.0: Robotics engineers, data scientists, and food designers, The Journal of Competency-Based Education., 6(2), 1-12. DOI: https://doi.org/10.1002/cbe2.1253
Sackey, S.M, Bester, A. y Adams, D. (2017). Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa, South African Journal of Industrial Engineering. 28, (1), 114-124 DOI: https://doi.org/10.7166/28-1-1584
Sakurada, L., Geraldes, C.A.S., Fernandes, F.P., Pontes, J. y Leitão, P. (2020). Analysis of New Job Profiles for the Factory of the Future. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, Proceedings of the SOHOMA 2020, Studies in Computational Intelligence, Paris, France, 1–2 October 2020, 1st ed.; Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Lamouri, S., Eds.; Springer: Cham, Switzerland, Volume 952.
Salah, B., Abidi, M.H., Mian, S.H., Krid, M., Alkhalefah, H. y Abdo, A. (2019). Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0. Sustainability, 11, 1477. https://doi.org/10.3390/su11051477 DOI: https://doi.org/10.3390/su11051477
Salah, B., Khan, S., Ramadan, M. y Gjeldum, N. (2020). Integrating the Concept of Industry 4.0 by Teaching Methodology in Industrial Engineering Curriculum. Processes, 8, 1007. https://doi.org/10.3390/pr8091007 DOI: https://doi.org/10.3390/pr8091007
Sariwati, I. y Universitas, F. (2024). Analysis of Potential Bankruptcy in Blue Bird Tbk and Transindo Utama Tbk using Springate and Grover Models. J. Ilm. Ekon. Bisnis, 12, 179–188. https://doi.org/10.37676/ekombis.v12i1. DOI: https://doi.org/10.37676/ekombis.v12i1.5247
Shan, S., Wen, X., Wei, Y., Wang, Z. y Chen, Y. (2020). Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry. Syst Res Behav Sci. 37 (4), 679–690. DOI: https://doi.org/10.1002/sres.2709
Soni, K. M., Hasteer, N., y Bhardwaj, A. (2020). Aspects to foster competences for engineering graduates: Education 4.0 paradigm. In 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 480-484. DOI: https://doi.org/10.1109/SMART50582.2020.9337093
Suleiman, Z., Shaikholla, S., Dikhanbayeva, D., Shehab, E. y Turkyilmaz, A. (2022) Industry 4.0: Clustering of concepts and characteristics, Cogent Engineering, 9, (1), 1-26. DOI: 10.1080/23311916.2022.2034264 DOI: https://doi.org/10.1080/23311916.2022.2034264
Thaariq, Z. Z. A., Utami, W. B., Haryono, M. B., y Vaz, B. L. (2024). Educational Technology in Industry 6.0. Wacana Akademika: Majalah Ilmiah Kependidikan, 8, (1), 134-141.
Tisch, M., Hertle, C., Abele, E., Metternich, J. y Tenberg, R. (2015). Learning factory design: A competency-oriented approach integrating three design levels. Int. J. Comput. Integr. Manuf., 29, 1355–1375 DOI: https://doi.org/10.1080/0951192X.2015.1033017
Wan, J., Cai, H. y Zhou, K. (2015). Industry 4.0: Enabling Technologies. In: 2015 International Conference on Intelligent Computing and Internet of Things (IC1T), Harbin, China, 135-140. DOI: https://doi.org/10.1109/ICAIOT.2015.7111555