Análisis de la optimización del consumo energético en una universidad ubicada en la provincia del Guayas
Analysis of the optimization of energy consumption in a university located in the province of Guayas
DOI:
https://doi.org/10.56712/latam.v5i6.3038Palabras clave:
eficiencia energética, auditoría energética, planta de energía, fotovoltaica, reducción de emisiones de CO₂Resumen
Esta investigación analiza la optimización del consumo energético en una universidad en la provincia del Guayas, Ecuador. A través de una auditoría energética, se identificaron las oportunidades para reducir el consumo mediante la implementación de tecnologías eficientes y energías renovables. En 2022, la universidad consumió 2.613.249 kWh, lo que representó un gasto anual de 229.019,68 USD. Entre las propuestas destacadas, se incluyó la sustitución de luminarias tradicionales por tecnología LED y la instalación de aires acondicionados más eficientes. Además, se evaluó la factibilidad de instalar una planta de energía fotovoltaica, lo que implicaría una inversión inicial de 580.520,44 USD, pero generaría un ahorro anual estimado de 139.822,86 USD y una reducción del 74,47% en las emisiones de CO. Esta investigación propone un enfoque integral que combina el ahorro energético, la mejora de la eficiencia y el uso de energías renovables, con el objetivo de reducir los costos operativos y mitigar el impacto ambiental. Las mejoras planteadas no solo reducirán el consumo de energía en un 51,69%, sino que también permitirán un retorno de la inversión en 4,62 años. Este enfoque es un ejemplo de cómo las instituciones educativas pueden liderar iniciativas sostenibles para enfrentar tanto la crisis energética como el cambio climático
Descargas
Citas
Afgan, N. (2004). Sustainability assessment of hydrogen energy systems. International Journal of Hydrogen Energy, 29(13), 1327-1342. https://doi.org/10.1016/j.ijhydene.2004.01.005 DOI: https://doi.org/10.1016/j.ijhydene.2004.01.005
Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739-755. https://doi.org/10.1016/S0360-5442(02)00019-1 DOI: https://doi.org/10.1016/S0360-5442(02)00019-1
Afolabi, R. O., Oluyemi, G. F., Officer, S., & Ugwu, J. O. (2019). Hydrophobically associating polymers for enhanced oil recovery – Part A: A review on the effects of some key reservoir conditions. Journal of Petroleum Science and Engineering, 180, 681-698. https://doi.org/10.1016/j.petrol.2019.06.016 DOI: https://doi.org/10.1016/j.petrol.2019.06.016
Agencia de Regulación y Control de energía. (2021).
Alnatheer, O. (2005). The potential contribution of renewable energy to electricity supply in Saudi Arabia. Energy Policy, 33(18), 2298-2312. https://doi.org/10.1016/j.enpol.2003.12.013 DOI: https://doi.org/10.1016/j.enpol.2003.12.013
Banerjee, C., Sharma, A., & D, N. K. (2021). Decline in terrestrial water recharge with increasing global temperatures. Science of The Total Environment, 764, 142913. https://doi.org/10.1016/j.scitotenv.2020.142913 DOI: https://doi.org/10.1016/j.scitotenv.2020.142913
Blok, K. (2005). Enhanced policies for the improvement of electricity efficiencies. Energy Policy, 33(13), 1635-1641. https://doi.org/10.1016/j.enpol.2004.02.006 DOI: https://doi.org/10.1016/j.enpol.2004.02.006
Cavaliero, C. K. N., & Da Silva, E. P. (2005). Electricity generation:. Regulatory mechanisms to incentive renewable alternative energy sources in Brazil. Energy Policy, 33, 1745-1752. https://doi.org/10.1016/j.enpol.2004.02.012 DOI: https://doi.org/10.1016/S0301-4215(04)00046-1
Cedula presupuestaria. (2021). https://www.unemi.edu.ec/wp-content/uploads/2019/02/cedula_presupuestaria_enero.pdf
Destouni, G., & Frank, H. (2010). Renewable Energy. AMBIO, 39(1), 18-21. https://doi.org/10.1007/s13280-010-0059-7 DOI: https://doi.org/10.1007/s13280-010-0059-7
Dominioni, G., Romano, A., & Sotis, C. (2019). A Quantitative Study of the Interactions between Oil Price and Renewable Energy Sources Stock Prices. Energies, 12(9), Article 9. https://doi.org/10.3390/en12091693 DOI: https://doi.org/10.3390/en12091693
Duque, R., Williams, R., & Payne, A. (2005). Accelerating residential PV expansion: Demand analysis for competitive electricity markets. Energy Policy, 33(15), 1912-1929. https://doi.org/10.1016/j.enpol.2004.03.005 DOI: https://doi.org/10.1016/j.enpol.2004.03.005
Eduardo Landivar. (2023). Entrevista personal [Comunicación personal].
El-Sayed, M. A. H. (2005). Solar supported steam production for power generation in Egypt. Energy Policy, 33, 1251-1259. https://doi.org/10.1016/j.enpol.2003.11.021 DOI: https://doi.org/10.1016/j.enpol.2003.11.021
Factor-de-emision-de-CO2-del-Sistema-Nacional-Interconectado-de-Ecuador-Informe-2021-2.pdf. (s. f.). Recuperado 26 de junio de 2023, de https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2022/12/Factor-de-emision-de-CO2-del-Sistema-Nacional-Interconectado-de-Ecuador-Informe-2021-2.pdf
Farghali, M., Osman, A. I., Mohamed, I. M. A., Chen, Z., Chen, L., Ihara, I., Yap, P.-S., & Rooney, D. W. (2023). Strategies to save energy in the context of the energy crisis: A review. Environmental Chemistry Letters, 21(4), 2003-2039. https://doi.org/10.1007/s10311-023-01591-5 DOI: https://doi.org/10.1007/s10311-023-01591-5
Germán Martínez Montes, María del Mar Serrano López, María del Carmen Rubio Gámez, & Antonio Menéndez Ondina. (2005). An overview of renewable energy in Spain. The small hydro-power case. Renewable and Sustainable Energy Reviews, 9(5), 521-534. https://doi.org/10.1016/j.rser.2004.05.008 DOI: https://doi.org/10.1016/j.rser.2004.05.008
Global Energy Crisis – Topics. (s. f.). IEA. Recuperado 22 de junio de 2023, de https://www.iea.org/topics/global-energy-crisis
Gnansounou, E., Dauriat, A., & Wyman, C. E. (2005). Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresource Technology, 96(9), 985-1002. https://doi.org/10.1016/j.biortech.2004.09.015 DOI: https://doi.org/10.1016/j.biortech.2004.09.015
He, L., Lin, F., Li, X., Sui, H., & Xu, Z. (2015). Interfacial sciences in unconventional petroleum production: From fundamentals to applications. Chemical Society Reviews, 44(15), 5446-5494. https://doi.org/10.1039/C5CS00102A DOI: https://doi.org/10.1039/C5CS00102A
Huacuz, J. M. (2005). The road to green power in Mexico—Reflections on the prospects for the large-scale and sustainable implementation of renewable energy. Energy Policy, 33(16), 2087-2099. https://doi.org/10.1016/j.enpol.2004.04.004 DOI: https://doi.org/10.1016/j.enpol.2004.04.004
Hvelplund, F. (2006). Renewable energy and the need for local energy markets. Energy, 31(13), 2293-2302. https://doi.org/10.1016/j.energy.2006.01.016 DOI: https://doi.org/10.1016/j.energy.2006.01.016
Informe-de-Gestion-2021. (2021). https://www.unemi.edu.ec/wp-content/uploads/2022/03/Informe-de-Gestion-2021-2021-31_3_22.pdf
Jackson, R. B., Friedlingstein, P., Le Quéré, C., Abernethy, S., Andrew, R. M., Canadell, J. G., Ciais, P., Davis, S. J., Deng, Z., Liu, Z., Korsbakken, J. I., & Peters, G. P. (2022). Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters, 17(3), 031001. https://doi.org/10.1088/1748-9326/ac55b6 DOI: https://doi.org/10.1088/1748-9326/ac55b6
Johnson, M. E. (2021). Geological Oceanography of the Pliocene Warm Period: A Review with Predictions on the Future of Global Warming. Journal of Marine Science and Engineering, 9(11), Article 11. https://doi.org/10.3390/jmse9111210 DOI: https://doi.org/10.3390/jmse9111210
Kaldellis,K, Vlachou, DS, & Korbakis, G. (2005). Techno-economic evaluation of small hydro power plants in Greece: A complete sensitivity analysis. Energy Policy, 33(15), 1969-1985. https://doi.org/10.1016/j.enpol.2004.03.018 DOI: https://doi.org/10.1016/j.enpol.2004.03.018
Lin, K.-L., Jan, M.-Y., & Liao, C.-S. (2017). Energy Consumption Analysis for Concrete Residences—A Baseline Study in Taiwan. Sustainability, 9(2), Article 2. https://doi.org/10.3390/su9020257 DOI: https://doi.org/10.3390/su9020257
Lior, N. (1997). Advanced energy conversion to power. Energy Conversion and Management, 38(10), 941-955. https://doi.org/10.1016/S0196-8904(96)00125-2 DOI: https://doi.org/10.1016/S0196-8904(96)00125-2
Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. https://doi.org/10.1016/j.energy.2006.10.017 DOI: https://doi.org/10.1016/j.energy.2006.10.017
Min, H. (2022). Examining the Impact of Energy Price Volatility on Commodity Prices from Energy Supply Chain Perspectives. Energies, 15(21), Article 21. https://doi.org/10.3390/en15217957 DOI: https://doi.org/10.3390/en15217957
ÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 13(18), Article 18. https://doi.org/10.3390/en13184839 DOI: https://doi.org/10.3390/en13184839
Romero Lara, M. J., Comino, F., & Ruiz, M. (2023). Seasonal energy efficiency ratio of regenerative indirect evaporative coolers—Simplified calculation method. Applied Thermal Engineering, 220, 119710. https://doi.org/10.1016/j.applthermaleng.2022.119710 DOI: https://doi.org/10.1016/j.applthermaleng.2022.119710
Veronese, E., Prina, M. G., Berizzi, A., Moser, D., & Manzolini, G. (2021). Costs of utility-scale photovoltaic systems integration in the future Italian energy scenarios. Progress in Photovoltaics: Research and Applications, 29(7), 786-801. https://doi.org/10.1002/pip.3382 DOI: https://doi.org/10.1002/pip.3382