Efectos sistémicos del consumo de sacarosa y su asociación con la respuesta inmunitaria: revisión sistemática

Systemic effects of sacarose consumption and its association with immune response: a systematic review

Autores/as

DOI:

https://doi.org/10.56712/latam.v5i5.2744

Palabras clave:

consumo de sacarosa, respuesta inmunitaria, azúcar de mesa, especies reactivas de oxígeno

Resumen

La sacarosa se consume en casi todos los alimentos, su principal fuente es el azúcar de caña. El objetivo fue identificar los efectos sistémicos del consumo de sacarosa y su asociación con la respuesta inmunitaria. Se utilizó la red EQUATOR y FAIRsharing, con la directriz de Elementos Preferidos de Informes para Revisiones Sistemáticas y Metanálisis (PRISMA), a través de búsquedas manuales y sistemáticas en cuatro bases de datos: PubMed, Multidisciplinary Digital Publishing Institute (MDPI), Frontiers, Cochrane del primero de enero de 2005 al 30 de abril de 2023. El consumo de sacarosa ocasiona efectos diversos en el organismo, en el sistema cardiovascular, estimula la inflamación subclínica, aumenta la PCR, IL-6, TNF-α, IL-β, así como los niveles de leptina. Se asocia con la presencia de sobrepeso/obesidad, Diabetes Mellitus Tipo 2 y en enfermedades musculoesqueléticas. Un elevado consumo de azúcar refinada, productos ultraprocesados ​​o azúcares añadidos, condicionan un riesgo de padecer enfermedades crónico-degenerativas incluso más que las grasas saturadas. También conduce a enfermedad coronaria, hígado graso con resistencia a la insulina, niveles elevados de glucosa, hiperlipidemia, síndrome metabólico y producción de Especies Reactivas del Oxígeno. El consumo de azúcar es seguro, no hay limitación de consumo en alimentos o prácticas de fabricación, por tanto, es importante continuar investigando los efectos a corto, mediano y largo plazo del azúcar en la dieta, su concentración ideal de consumo y su influencia en la activación y regulación de la respuesta inmunitaria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Beatriz Elina Martínez Carrillo, Universidad Autónoma del Estado de México, Facultad de Medicina

Flor de María Cruz Estrada, Universidad Autónoma del Estado de México, Facultad de Medicina

Ana Laura Guadarrama López, Universidad Autónoma del Estado de México, Clínica Multidisciplinaria de la Salud

Arturo García Rillo, Universidad Autónoma del Estado de México, Facultad de Medicina

María Luisa Pimentel Ramírez, Universidad Autónoma del Estado de México, Facultad de Medicina

Citas

Abrahamian, T.R. (2013). Elevated adiponectin expression promotes adipose tissue vascularity under conditions of diet-induced obesity. Metabolism, 61(12), 1730-1738. DOI: https://doi.org/10.1016/j.metabol.2013.07.010

Agus, A., Denizot, J., Thévenot, J., Martínez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E., & Barnich, N. (2016). Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Scientific Reports, 6, 19032. DOI: https://doi.org/10.1038/srep19032

Bédard, A., Northstone, K., Henderson, A.J., Shaheen, S.O. (2017). Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes. European Respiratory Journal, 50(1), 1700073. DOI: https://doi.org/10.1183/13993003.00073-2017

Beilharz, J.E., Maniam, J., & Morris, M.J. (2016). Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behavioural Brain Research, 306, 1-7. DOI: https://doi.org/10.1016/j.bbr.2016.03.018

Bray, G.A., & Popkin BM. (2014). Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?. Diabetes Care, 37(4), 950-956. DOI: https://doi.org/10.2337/dc13-2085

Brianza-Padilla, M., Carbó, R., Arana, J.C., Vázquez-Palacios, G., Ballinas-Verdugo, M.A., Cardoso-Saldaña, G., Palacio, A.G., Juárez-Vicuña, Y., Sánchez, F., Martínez-Martínez, E., Huang, F., Sánchez-Muñoz, F., & Bojalil, R. (2016). Inflammation related microRNAs are modulated in total plasma and in extracellular vesicles from rats with chronic ingestion of sucrose. Biomed Research International, ID 2489479, 7. DOI: https://doi.org/10.1155/2016/2489479

Burchfield, J.G., Kebede, M.A., Meoli, C.C., Stockli, J., Whitworth, P.T., Wright, A.L., Hoffman, N.J., Minard, A.Y., Ma, X., Krycer, J.R., Nelson, M.E., Shi-Xion, T., Yau, B., Thomas, K.C., Wee, N.K.Y., Ee-Cheng, K., Enríquez, R.F., Vissel, B., Biden, T.J., Baldock, P.A., Hoehn, K.L., Cantley, J., Cooney, G.J., James, D.E., Fazakerley, D.J. (2018). High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 293(15), 5731-5745. DOI: https://doi.org/10.1074/jbc.RA117.000808

Cahova, M., Dankova, H., Pelenickova, E., Papackova, Z., & Kazdova, L. (2012). The opposite effects of high-sucrose and high-fat diet on fatty acid oxidation and very low-density lipoprotein secretion in rat model of metabolic syndrome. Journal of Nutrition and Metabolism, 757205. DOI: https://doi.org/10.1155/2012/757205

Cao, L., Liu, X., Cao, H., Lv, Q., & Tong, N. (2012). Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance. Oxidative Medicine and Cellular Longevity, 374346. DOI: https://doi.org/10.1155/2012/374346

Casqueiro, J., Casqueiro, J., & Alves, C. (2012). Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism, 16 (Suppl 1), S27-36. DOI: https://doi.org/10.4103/2230-8210.94253

Castellanos, A.K., Rodríguez, S.M., Cardoso, G., Díaz, E., Tejero, M.E., del Bosque, L., & Zabala C.R. (2015). Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model. Nutrición Hospitalaria, 31(6), 2546-2553.

Chiang, S.H., Harrington, W.W., Luo, G., Milliken, N.O., Ulrich, J.C., Chen, J., Rajpal, D.K., Qian, Y., Carpenter, T., Murray, R., Geske, R.S., Stimpson, S.A., Kramer, H.F., Haffner, C.D., Becherer, J.D., Preugschat, F., & Billin, A.N. (2015). Genetic Ablation of CD38 protects against Western diet-induced exercise intolerance and metabolic inflexibility. PLoS One, 10(8), e0134927. DOI: https://doi.org/10.1371/journal.pone.0134927

Chung, M., Ma, J., Patel, K., Berger, S., Lau, J., & Lichtenstein, A.H. (2014). Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 100(3), 833-849. DOI: https://doi.org/10.3945/ajcn.114.086314

Cochrane Library [internet]. España. John Wiley & Sons, Inc [cited 2024 Feb 15]. Availabre from: http://onlinelibrary.wiley.com/cochranelibrary/search/

Cockram, T.O.J., Puigdellívol, M., & Brown, G. (2019). Calreticulin and galectin-3 opsonize bacteria for phagocytosis by microglia. Frontiers in Immunology, 10, 2647. DOI: https://doi.org/10.3389/fimmu.2019.02647

Corona-Pérez, A., Díaz-Muñoz, M., Cuevas-Romero, E., Luna-Moreno, D., Valente-Godínez, H., Vázquez-Martínez, O., Martínez-Gómez, M., & Rodríguez-Antolín, J. (2017). Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats. The International Journal on the Biology of Stress, 20(6), 608-617. DOI: https://doi.org/10.1080/10253890.2017.1381840

D´Alessandro, M.E., Selenscig, D., Illesca, P., Chicco, A., & Lombardo, Y.B. (2015). Time course of adipose tissue dysfunction associates with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats. Food & Function, 6(4), 1299-1309. DOI: https://doi.org/10.1039/C4FO00903G

De Koning, L., Malik, V.S., Kellog, M.D., Rimm, E.B., Willett, W.C., & Hu, B.F. (2012). Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation, 125(14), 1735-1741. DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.067017

Donath, M.Y., & Shoelson, S.E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology, 11(2), 98-107. DOI: https://doi.org/10.1038/nri2925

Ergaz, Z., Neeman-Azulay, M., Weinstein-Fudim, L., Weksler-Zangen, S., Shoshani-Dror, D., Szyf, M., & Ornoy, A. (2016). Diabetes in the Cohen rat intensifies the fetal pancreatic damage induced by the diabetogenic high sucrose low copper diet. Birth Defects Research B: Developmental and Reproductive Toxicology, 107(1), 21-31. DOI: https://doi.org/10.1002/bdrb.21169

Ergaz, Z., Weinstein-Fudim, L., & Ornoy, A. (2018). High sucrose low copper diet in pregnant diabetic rats induces transient oxidative stress, hypoxia, and apoptosis in the offspring’s liver. Birth Defects Research, 110(12), 1001-1015. DOI: https://doi.org/10.1002/bdr2.1341

Esquivel, A.L., Pérez-Ramos, J., Cisneros, J., Herrera, I., Rivera-Rosales, R., Montaño, M., & Ramos C. (2014). The effect of obesity and tobacco smoke exposure on inflammatory mediators and matrix metalloproteinases in rat model. Toxicology Mechanisms and Methods, 24(9), 633-643. DOI: https://doi.org/10.3109/15376516.2014.956911

Fajstova, A., Galanova, N., Coufal, S., Malkova, J., Kostovcik, M., Cermakoca, M., Pelantova, H., Kuzma, M., Sediva, B., Hudcovic, T., Hrncir, T., Tlaskalova-Hogenova, H., Kverka, M., & Kostovcikova, K. (2020). Diet rich in simple sugars promotes pro-inflammatory response via gut microbiota alteration and TLR4 signaling. Cells, 9(2), 2701. DOI: https://doi.org/10.3390/cells9122701

Farid, A., Hesham, M., El-Dewak, M., & Amin, A. (2020). The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharmaceutical Journal, 28(10), 1290-1300. DOI: https://doi.org/10.1016/j.jsps.2020.08.019

Farrell, G.C., Rooyen, D., Gan, L., & Chituri, S. (2012). NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut and Liver, 6(2), 149-171. DOI: https://doi.org/10.5009/gnl.2012.6.2.149

Fernández-Sada, E., Torres-Quintanilla, A., Silva-Platas, C., García, N., Cicero, W.B., Rodríguez-Rodríguez, C., De la Peña, E., Bernal-Ramírez, J., Treviño-Saldaña, N., Oropeza-Almazán, Y., Castillo, E.C., Elizondo-Montemayor, L., Carvajal, K., & García-Rivas, G. (2017). Proinflammatory cytokines are soluble mediators linked with ventricular arrhythmias and contractile dysfunction in a rat model of metabolic syndrome. Oxidative Medicine and Cellular Longevity, ID. 7682569. DOI: https://doi.org/10.1155/2017/7682569

Fonseca, C.S.M., Basford, J.E., Kuhel, D.G., Konaniah, E.S., Cash, J.G., Lima, V.L.M., & Hui, D.Y. (2020). Distinct influence of hypercaloric diets predominant with fat or fat and sucrose and adipose tissue and liver inflammation in mice. Molecules, 25(19), 4369. DOI: https://doi.org/10.3390/molecules25194369

Frontiers [internet]. Lausana, Suiza. Frontiers Media SA [cited 2024 Feb 02]. Available from: https://www.frontiersin.org/

Fuente-Martín, E., García-Cáceres, C., Díaz, F., Argente-Arizón, P., Granado, M., Barrios, V., Argente, J., & Chowen, J.A. (2013). Hypothalamic inflammation without astrogliosis in response to high sucrose intakes modulated by neonatal nutrition in male rats. Endocrinology, 154(7), 2318-2330. DOI: https://doi.org/10.1210/en.2012-2196

Gatineau, E., Cluzet, S., Krisa, S., Papet, I., Migne, C., Remond, D., Dardevet, D., Polakof, S., Richard, T., & Mosoni, L. (2018). Effects of nutritional state, aging and high chronic intake of sucrose on brain protein synthesis in rats: modulation of it by rutin and other micronutrients. Food & Function, 239(5), 2922-2930. DOI: https://doi.org/10.1039/C7FO01953J

Gibson, S., Gunn, P., Wittekind, A., & Cottrell, R. (2013). The effects of sucrose on metabolic health: a systematic review of human intervention studies in healthy adults. Critical Reviews in Food Science and Nutrition, 53(6), 591-614. DOI: https://doi.org/10.1080/10408398.2012.691574

Gliemann, L., Rytter, N., Lindskrog, M., Lundberg, M.H., Akerstrom, T., Sylow, L., Richter, E.A., & Hellsten, Y. (2017). Endothelial mechano-transduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. Journal of Physiology, 595(16), 5557-5571. DOI: https://doi.org/10.1113/JP274623

González, M.Y., Castillo, A.O., Llerena, B.T., Alfonso, P.O., de la Barca, B.M., & González, M.Y. (2015). Metabolic Syndrome in Wistar rats induce by sucrose rich-diet [Spanish]. Acta Bioquímica y Clínica Latinoamericana, 49(3), 301-309.

Guan, S.Z., Liu, J.W., Fei, F.E., Bun, N.T., Lian, Y.L., & Ge, H. (2014). Chronic unpredictable mild stress impairs erythrocyte immune function and changes T-lymphocyte subsets in a rat model of stress-induced depression. Environmental Toxicology and Pharmacology, 37(1), 414-422. DOI: https://doi.org/10.1016/j.etap.2013.12.013

Gupta, S., Gambhir, J.K., Kalra, O.P., Gautam, A., Shukla, K., Mehndiratta, M., Agarwal, S., & Rimi, S. (2013). Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. Journal of Diabetes and its Complications, 27, 548-552. DOI: https://doi.org/10.1016/j.jdiacomp.2013.07.005

Gyllenhammer, L.E., Weigensberg, M.J., Sprujit-Metz, D., Allayee, H., Goran, I.M., & Davis, J.N. (2014). Modifying influence of dietary sugar in the relationship between cortisol and visceral adipose tissue in minority youth. Obesity (Silver Spring), 22(2), 474-481. DOI: https://doi.org/10.1002/oby.20594

Han, P., Keast, J.R., & Roura, E. (2017). Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults. British Journal of Nutrition, 118(10), 763-770. DOI: https://doi.org/10.1017/S0007114517002872

He, W., Yuan, T., Choezom, D., Hunkler, H., Annamalai, K., Lupse, B., & Maedler, K. (2018). Ageing potentiates diet-induced glucose intolerance, β-cell failure and tissue inflammation through TLR4. Scientific Reports, 8(1), 2767. DOI: https://doi.org/10.1038/s41598-018-20909-w

Imamura, F., O`Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S.N., & Forouhi, N.G. (2015). Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. British Medical Journal, 351, h3576. DOI: https://doi.org/10.1136/bmj.h3576

Ishimoto, T., Lanaspa, M.A., Rivard, C.J., Roncal-Jiménez, C.A., Orlicky, D.J., Cicerchi, C., McMahan, R.H., Abdelmalek, M.F., Rose, H.R., Jackman, M.R., MacLean, P.S., Diggle, C.P., Asipu, A., Inaba, S., Kosugi, R., Sato, W., Maruyama, S., Sánchez-Lozada, L.G., Sautin, Y.Y., Hill, J.O., Bonthron, D.T., & Johnson, R.J. (2013). High fat and high sucrose (Western) diet induce steatohepatitis that is dependent on fructokinase. Hepatology, 58(5), 1632-1643. DOI: https://doi.org/10.1002/hep.26594

James, J.D., Sean, C.L., James, H.O. (2016). The evidence for saturated fat and for sugar related to coronary heart disease. Progress in Cardiovascular Diseases, 58(5), 464-472, DOI: https://doi.org/10.1016/j.pcad.2015.11.006

Jeyakumar, S.M., Gopal, M.R., Garlapati, C., Desi, R.S., & Vajreswari, A. (2020). Diabetogenic diet-induced insulin resistance associates with lipid droplet proteins and adipose tissue secretome, but not sexual dimorphic adipose tissue fat accumulation in Wistar rats. Biochemistry and Biophysics Reports, 24, 100831. DOI: https://doi.org/10.1016/j.bbrep.2020.100831

Jia, G., Habibi, J., Bostick, B.P., Ma, L., DeMarco, V.G., Aroor, A.R., Hayden, M.R., Whaley-Connel, A.T., & Sowers, J.R. (2015). Uric acid promotes left ventricular diastolic dysfunction in mice fed a western diet. Hypertension, 65(3), 531-539. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.114.04737

Ji-Heen, K., Sung-ll, Y., Mi-Hee, P., Jun-Hong, P., Jeong, T., & Han-Oh, P. (2013). Anti-Obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One, 8(1), e54617. DOI: https://doi.org/10.1371/journal.pone.0054617

Joo-Yeon, C., Yoo-Sun, K., Yuri, K., & Sang-Ho, Y. (2017). Regulation of inflammation by sucrose isomer, turanose, in raw 264.7 cells. Journal of Cancer Prevention, 22(3), 195-201. DOI: https://doi.org/10.15430/JCP.2017.22.3.195

Junghoon, L., Ah-Reum, O., Hui-Young, L., Young-Ah, M., Ho-Jae, L., & Ji-Young, C. (2020). Deletion of KLF10 leads to stress-induced liver fibrosis upon high sucrose feeding. International Journal of Molecular Sciences, 22(1), 331. DOI: https://doi.org/10.3390/ijms22010331

Khan, T.A., & Sievenpiper, J.L. (2016). Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. European Journal of Nutrition, 55(Suppl 2), 25-43. DOI: https://doi.org/10.1007/s00394-016-1345-3

Khan, T.A., Tayyiba, M., Agarwal, A., Blanco, S., De Souza, R.J., Wolever, M.S.T., Leiter, L.A., Kendall, C.W.C., Jenkins, D.J.A, & Sievenpiper, J.L. (2019). Relation of total sugars, sucrose, fructose, and added sugars with the risk of cardiovascular disease: a systematic review and dose-response meta-analysis of prospective cohort studies. Mayo Clinic Proceedings, 94(12), 2399-2414. DOI: https://doi.org/10.1016/j.mayocp.2019.05.034

Kholi, R., Kirby, M., Xanthakos, S.A., Softic, S., Feldstein, A.E., Saxena, V., Tang, P.H., Miles, L., Miles, M.V., Balistreri, W.F., Woods, S.C., & Seeley, R.J. (2010). High-fructose, medium chain trans-fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology, 52(3), 934-944. DOI: https://doi.org/10.1002/hep.23797

Kosova, E.C., Auinger, P., & Bremer, A.A. (2013). The relationships between sugar-sweetened beverage intake and cardiometabolic markers in young children. Journal of the Academy of Nutrition and Dietetics, 113(2), 219-227. DOI: https://doi.org/10.1016/j.jand.2012.10.020

Krishan, P., Singh, G., & Bedi, O. (2017). Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1 α levels in type-1 diabetic rats. Journal of Diabetes & Metabolic Disorders, 16, 47. DOI: https://doi.org/10.1186/s40200-017-0331-5

Kumar Jena, P., Sheng, L., Di Lucente, J., Lee-Way, J., Maezawa, I., & Yu-Jui, Y.W. (2018). Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. The FASEB Journal, 32(5), 2866-2877. DOI: https://doi.org/10.1096/fj.201700984RR

Laffin, M., Fedorak, R., Zalasky, A., Park, H., Gill, A., Agrawal, A., Keshteli, A., Hotte, N., & Madsen, K.L. (2019). A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Scientific Reports, 9(1), 12294. DOI: https://doi.org/10.1038/s41598-019-48749-2

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Aloannidis, J.P., Clarke, M., Devereaux, P.J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. British Medical Journal, 339, b2700. DOI: https://doi.org/10.1136/bmj.b2700

Li-Juan, X., Hui-Ming, L., & Pin-Kang, W. (2010). The effect of chronic mild stress on tumor-bearing rats´behavior and its mechanism. Neuroscience Letters, 473(1), 1-4. DOI: https://doi.org/10.1016/j.neulet.2009.06.031

Lima, M.L., Leite, L.H., Gioda, C.R., Leme, F.O., Couto, C.A., Coimbra, C.C., Leite, V.H., Ferrari, T.C. (2016) A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet. Journal of Diabetes Research, 9127076. DOI: https://doi.org/10.1155/2016/9127076

Lopes, D., Zajdenverg, L., Rodacki, M., & Lopes, E. (2013). Does sucrose intake affect anthropometric variables, glycemia, lipemia and C-reactive protein in subjects with type 1 diabetes? a controlled-trial. Diabetology & Metabolic Syndrome, 5(1), 67. DOI: https://doi.org/10.1186/1758-5996-5-67

Luptak, I., Qin, F., Sverdlov, A.L., Pimentel, D.R., Panagia, M., Croteau, D., Siwik, D.A., Bachschmid, M.M., He, H., Balschi, J.A., & Colucci, W.S. (2019). Energetic dysfunction is mediated by mitochondrial reactive oxygen species and precedes structural remodeling in metabolic heart disease. Antioxidants & Redox Signaling, 31(7), 539-549. DOI: https://doi.org/10.1089/ars.2018.7707

Ma, T., Liaset, B., Hao, Q., Koefoed, P.R., Fjaer, E., Thi Ngo, H., Lillefosse, H.H., Ringholm, S., Sonne, S.B., Treebak, J.T., Pilegaard, H., Froyland, L., Kristiansen, K., & Madsen, L. (2011). Sucrose counteracts the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PLoS One, 6(6), e21647. DOI: https://doi.org/10.1371/journal.pone.0021647

Machado-Villarroel, L., Montano-Candia, M., & Dimakis-Ramírez, D. (2017). Diabetes mellitus and its impact in the etiopathogeny of sepsis [Spanish]. Grupo Ángeles Acta Médica, 15(3), 207-215. DOI: https://doi.org/10.35366/74391

Maekawa, R., Seino, Y., Ogata, H., Murase, M., Iida, A., Hosokawa, K., Joo, E., Harada, N., Tsunekawa, S., Hamada, Y., Oiso, Y., Inagaki, N., Hayashi, Y., & Arima, H. (2017). Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice. The Journal of Nutritional Biochemistry, 49, 71-79. DOI: https://doi.org/10.1016/j.jnutbio.2017.07.010

Martínez-Carrillo, B.E., Rosales-Gómez, C.A., Ramírez-Durán, N., Reséndiz-Albor, A.A., Escoto-Herrera, J.A., Mondragón-Velásquez, T., Valdés-Ramos, R., & Castillo-Cardiel, A. (2019). Effect of chronic consumption of sweeteners on microbiota and immunity in the small intestine of young mice. International Journal of Food Science, 9619020. DOI: https://doi.org/10.1155/2019/9619020

Martínez-Medina, M., Denizot, J., Dreux, N., Robin, F., Billard, E., Bonnet, R., Darfeuille-Michaud, A., & Barnich, N. (2014). Western diet induces dysbiosis with increase E coli in CEABAC10 mice, alters host barrier function favoring AIEC colonization. Gut, 63(1), 116-124. DOI: https://doi.org/10.1136/gutjnl-2012-304119

Masek, T., Filipovic, N., Vuica, A., & Starcevic, K. (2017). Effects of treatment with sucrose in drinking water on liver histology, lipogenesis and lipogenic gene expression in rats fed high-fiber diet. Prostaglandins, Leukotrienes and Essential Fatty Acids, 116, 1-8. DOI: https://doi.org/10.1016/j.plefa.2016.11.001

May, C.E., & Dus, M. (2021). Confection confusion: interplay between diet, taste and nutrition. Trends in endocrinology and Metabolism, 32(2), 95-105. DOI: https://doi.org/10.1016/j.tem.2020.11.011

McKane, C.K., Marmarelis, M., Mendu, M.L., Moromizato, T., Gibbons, F.K., & Christopher, K.B. (2014). Diabetes mellitus and community-acquired bloodstream infections in the critically ill. Journal of Critical Care, 29(1), 70-76. DOI: https://doi.org/10.1016/j.jcrc.2013.08.019

Mckee, T., & Mckee, J.R. (2020). The molecular basis of life. 7e Oxford University: The McGraw-Hill Companies, Inc. pp. 20-45. DOI: https://doi.org/10.1093/hesc/9780190847685.001.0001

MDPI. (2021). Multidisciplinary Digital Publishing Institute [internet]. Basilea, Suiza. 2024 Jan 23. Available from: https://www.mdpi.com/

Mitsutomi, K., Masaki, T., Shimasaki, T., Chiba, S., Kakuma, T., & Shibata, H. (2013). Effects of a nonnutritive sweetener on body adiposity energy metabolism in mice with diet-induced obesity. Metabolism Clinical and Experimental, 63(1), 69-78. DOI: https://doi.org/10.1016/j.metabol.2013.09.002

Mridha, A.R., Haczeyni, F., Yeh, M.M., Haigh, W.G., Ioannou, G.N., Barn, V., Ajamieh, H., Adams, L., Hamdorf, J.M., Teoh, N.C., & Farrell, G.C. (2017). TLR9 is up regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival. Clinical Science, 131(16), 2145-2159. DOI: https://doi.org/10.1042/CS20160838

NCBI. (2021). National Center for Biotechnology Information. Rockville Pike, Bethesda MD, USA. National Library of Medicine cited 2024 Jan 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

Nemoseck, T.M., Carmody, E.G., Furchner-Evanson, A., Gleason, M., Li, A., Potter, H., Rezende, L.M., Lane, K.L., & Kern, M. (2011). Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutrition Research, 31(1), 55-60. DOI: https://doi.org/10.1016/j.nutres.2010.11.002

Neuhofer, A., Wernly, B., Leitner, L., Sarabi, A., Sommer, N.G., Staffler, G., Zeyda, M., & Stulnig, T.M. (2014). An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular Diabetology, 13:23. DOI: https://doi.org/10.1186/1475-2840-13-23

Nojima, K., Sugimoto, K., Ueda, H., Babaya, N., Ikegami, H., & Rakugi, H. (2013). Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocrine Journal, 60(3), 261-274. DOI: https://doi.org/10.1507/endocrj.EJ12-0258

O´Brien, P., Han, G., Ganpathy, P., Pitre, S., Zhang, Y., Ryan, J., Sim, P.Y., Harding, S.V., Gray, R., Preedy, V.R., Sanders, T.A.B., & Corpe, C.P. (2020). Chronic effects of a high sucrose diet on murine gastrointestinal nutrient sensor gene and protein expression levels and lipid metabolism. International Journal of Molecular Sciences, 22(1), 137. DOI: https://doi.org/10.3390/ijms22010137

Orchard, T.S., Gaudier-Díaz, M.M., Phuwamongkolwiwat-Chu, P., Andridge, R., Lustberg, M.B., Bomser, J., Cole, R.M., Belury, M.A., & DeVries A.C. (2018). Low sucrose, omega 3 enriched diet has region-specific effects on neuroinflammation and synaptic function markers in a mouse model of doxorubicin-based chemotherapy. Nutrients, 10(12), 2004. DOI: https://doi.org/10.3390/nu10122004

Ozkan, H., & Yakan, A. (2019). Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Annals of Hepatology, 18(5), 715-724. DOI: https://doi.org/10.1016/j.aohep.2019.03.013

Pei-Wen, W., Hsiao-Mei, K., Hung-Tu, H., Chang, A.Y.W., Shao-Wen, W., Ming-Hong, T., Jiin-Haur, C., I-Yan, C., Shun-Chen, H., Tsu-Kung, L., & Chia-Wei, L. (2014). Biphasic response of mitochondrial biogenesis to oxidative stress in visceral fat of diet-induced obesity mice. Antioxidants & Redox Signaling, 20(16), 2572-2588. DOI: https://doi.org/10.1089/ars.2013.5334

Perazza, L.R., Mitchell, P.L., Jensen, B.A.H., Daniel, N., Boyer, M., Varin, T.V., Bouchareb, R., Nachbar, R.T., Bouchard, M., Blais, M., Gagné, A., Joubert, P., Sweeney, G., Roy, D., Arsenault, B.J., Mathieu, P., & Marette, A. (2020). Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr-/-ApoB 100/100 mice. Atherosclerosis, 304, 9-21. DOI: https://doi.org/10.1016/j.atherosclerosis.2020.05.002

Prasad, K., & Dhar, I. (2014). Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. International Journal of Angiology, 23(4), 217-226. DOI: https://doi.org/10.1055/s-0034-1387169

Prinz, P. (2019). The role of dietary sugars in health: molecular composition or just calories? European Journal of Clinical Nutrition, 73, 1216-1223. DOI: https://doi.org/10.1038/s41430-019-0407-z

Pruett, S.B. (2003). Stress and the immune system. Pathophysiology, 9(3), 133-153. DOI: https://doi.org/10.1016/S0928-4680(03)00003-8

Qin, Z., Hou, X., Weisbrod, R.M., Seta, F., Cohen, R.A., & Tong, X. (2014). Nox 2 mediates high sucrose diet-induced nitric oxide dysfunction and inflammation in aortic smooth muscle cells. Journal of Molecular and Cellular Cardiology, 72, 56-63. DOI: https://doi.org/10.1016/j.yjmcc.2014.02.019

Raatz, S.K., Johnson, L.K., & Picklo, M.J. (2015). Consumption of honey, sucrose, and high-fructose corn syrup produces similar metabolic effects in glucose-tolerant and- intolerant individuals. Journal of Nutrition, 145(10), 2265-2272. DOI: https://doi.org/10.3945/jn.115.218016

Raben, A., & Astrup, A. (2000). Leptin is influenced both by predisposition to obesity and diet composition. International Journal of Obesity and Related Metabolic Disorders, 24(4), 450-459. DOI: https://doi.org/10.1038/sj.ijo.0801178

Reijne, A.C., Talarovicova, A., Ciapaite, J., Bruggink, J.E., Bleeker, A., Groen, A.K., Dirk-Jan, R., Bakker, B.M., & Dijk, G. (2019). Running wheel access fails to resolve impaired sustainable health in mice feeding a high fat sucrose diet. Aging (Albany NY), 11(5), 1564-1579. DOI: https://doi.org/10.18632/aging.101857

Rivera, C.A., Abrams, S.H., Tcharmtchi, M.H., Allman, M., Ziba, T.T., Finegold, M.J., & Smith, C.W. (2006). Feeding a corn oil/sucrose-enriched diet enhances steatohepatitis in sedentary rats. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290(2), G386-G393. DOI: https://doi.org/10.1152/ajpgi.00229.2005

Rodríguez, C.P., González, M.C., Aguilar-Salinas, C.A., & Nájera-Medina, O. (2017). Immune mechanisms involved in obesity [Spanish]. Investigación Clínica, 58(2), ISSN: 0535-5133.

Roncal-Jimenez, C.A., Lanaspa, M.A., Rivard, C.J., Nakagawa, T., Sanchez-Lozada, L.G., Jalal, D., Andres-Hernando, A, Tanabe, K., Madero, M., Li, N., Cicerchi, C., McFann, K., Sautin, Y.Y., & Johnson, R.J. (2011). Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism, 60(9), 1259-1270. DOI: https://doi.org/10.1016/j.metabol.2011.01.008

Rosales-Gómez, C.A., Martínez-Carrillo, B.E., Reséndiz-Albor, A.A., Ramírez-Durán, N., Valdés Ramos, R., Mondragón-Velásquez, T., & Escoto-Herrera, J.A. (2018). Chronic consumption of sweeteners and its effect on glycaemia, cytokines, hormones, and lymphocytes of GALT in CD1 mice. Biomed Research International, PMID: 29854725. DOI: https://doi.org/10.1155/2018/1345282

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A., Ogurtsova, K., Shaw, J.E., Bright, D., Willimias, R., & IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. DOI: https://doi.org/10.1016/j.diabres.2019.107843

Sánchez-Delgado, M., Estrada, J.A., Paredes-Cervantes, V., Kaufer-Horwitz, M., & Contreras, I. (2021). Changes in nutrient and calorie intake, adipose mass, triglycerides and TNF-α concentrations after non-caloric sweetener intake: a pilot study. International Journal for Vitamin and Nutrition Research, 91(1-2), 87-98. DOI: https://doi.org/10.1024/0300-9831/a000611

Schreyer, S., Berndt, N., Eckstein, J., Mülleder, M., Hemmati-Sadeghi, S., Klein, C., Abuelnor, B., Panzel, A., Meierhofer, D., Spranger, J., Steiner, B., & Brachs, S. (2021). Dietary-challenged mice with Alzheimer-like pathology show increased energy expenditure and reduce adipocyte hypertrophy and steatosis. Aging (Albany NY), 13(8), 10891-10919. DOI: https://doi.org/10.18632/aging.202978

Sevastianova, K., Santos, A., Kotronen, A., Hakkarainen, A., Makkonen, J., Silander, K., Peltonen, M., Romeo, S., Lundbom, J., Lundbom, N., Olkkonen, VM., Gylling, H., Fielding, B.A., Rissanen, A., & Yki-Järvinen, H. (2012). Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Clinical Nutrition, 96(4), 727-734. DOI: https://doi.org/10.3945/ajcn.112.038695

Silva, D., Moreira, R., Beltrao, M., Sokhatska, O., Montanha, T., Pizarro, A., García-Larsen, V., Villegas, R., Delgado, L., Moreira, P., Carvalho, J., & Moreira, A. (2019). What is the effect of a mediterranean compared with a fast-food meal on the exercise inducen adipokine changes? A randomized cross-over clinical trial. PLoS One, 14(4), e0215475. DOI: https://doi.org/10.1371/journal.pone.0215475

Simoes, I.C.M., Karkucinska-Wieckowska, A., Janikiewicz, J., Szymanska, S., Pronicki, M., Dobrzyn, P., Dabrowski, M., Dobrzyn, A., Oliveira, P.J., Zischa, H., Potes, Y., & Wieckowski, M.R. (2020). Western diet causes obesity-induced nonalcoholic fatty liver disease development by differentially compromising the autophagic response. Antioxidant (Basel), 9(10), 995. DOI: https://doi.org/10.3390/antiox9100995

Skye Hsin-Hsin, Y., Feng-Shiun, S., Hui-Kang, L., Heng-Hsiang, Y., Pei-Chen, K., Yi-Heng, L., Li-Min, C., Shu-Meng, H., Li-Jung, C., Kuan-Wei, W., Young-Ji, S., & Huey-Jen, T. (2020). A high-sucrose diet aggravates Alzheimer`s disease pathology, attenuates hypothalamic leptin signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiology of Aging, 90, 60-74. DOI: https://doi.org/10.1016/j.neurobiolaging.2019.11.018

Soares, C.O., Santos, D.A., Barbosa-da-Silva, S., Mandarim-de-Lecerda, C.A., & Aguila, M.V. (2014). The inflammatory profile and liver damage of a sucrose-rich diet in mice. Journal of Nutritional Biochemistry, 25(2), 193-2000. DOI: https://doi.org/10.1016/j.jnutbio.2013.10.006

Softic, S., Cohen, D.E., & Kahn, C.R. (2016). Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Digestive Diseases and Sciences, 61(5), 1282-1293. DOI: https://doi.org/10.1007/s10620-016-4054-0

Souza-Cruz, E.M., Bitencourt de Morais, J.M., Dalto da Rosa, C.V., Da Silva, S.M., Comar, J.F., De Almeida, L.G., & Ferreira, F.R. (2020). Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats. Biology Open, 9(3), bio047282. DOI: https://doi.org/10.1242/bio.047282

Sowers, J.R., Habibi, J., Jia, G., Bostick, B., Manrique-Acevedo, C., Lastra, G., Yang, Y., Chen, D., Sun, Z., Domeier, T.L., Durante, W., Whaley-Connell, A.T., Hill, M.A., Jaisser, F., DeMarco, V.G., & Aroor, A.R. (2020). Endothelial sodium channel activation promotes cardiac stiffness and diastolic dysfunction in Western diet fed female mice. Metabolism, 109, 154223. DOI: https://doi.org/10.1016/j.metabol.2020.154223

Sulzbacher-Da Silva, B., Borges, A.M., Taffarel, M., Borba, I.G., Ortega Telles, L., Vitorino, L.V., Henrique-Aguiar, D., Correa Dias, M., Ferreira Nascimiento, A., Gindri Sinhorin, D.G., de Azevedo Melo L.R., & Facholi Bomfin, G. (2021). High sucrose diet attenuates oxidative stress, inflammation and liver injury in thioacetamide-induced liver cirrhosis. Life Sciences, 267, 118944. DOI: https://doi.org/10.1016/j.lfs.2020.118944

Sun, S., Hanzawa, F., Umeki, M., Matsuyama, Y., Nishimura, N., Ikeda, S., Mochizuki, S., & Oda, H. (2019). Impacts of high-sucrose diet on circadian rhythms in the small intestine of rats. Chronobiology International, 36(6), 826-837. DOI: https://doi.org/10.1080/07420528.2019.1592185

Sverdlov, A.L., Elezaby, A., Behring, J.B., Bachschmid, M.M., Luptak, I., Tu, V.H., Siwik, D.A., Miller, E.J., Liesa, M., Shirihai, O.S., Pimentel, D.R., Cohen, R.A., & Colucci, W.S. (2015). High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. Journal of Molecular and Cellular Cardiology, 78, 165-173. DOI: https://doi.org/10.1016/j.yjmcc.2014.07.018

Sverdlov, A.L., Elezaby, A., Qin, F., Behring, J.B., Luptak, I., Calamaras, T.D., Siwik, D.A., Miller, E.J., Liesa, M., Shirihai, O.S., Pimentel, D.R., Cohen, R.A., Bachschmid, M.M., & Colucci, W.S. (2016). Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease. Journal of the American Heart Association, 5(1), e002555. DOI: https://doi.org/10.1161/JAHA.115.002555

Tallino, S., Duffy, M., Ralle, M., Paz, C.M., Latorre, M., & Burkhead, J.L. (2015). Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. Journal of Nutrirional Biochemistry, 26(10), 996-1006. DOI: https://doi.org/10.1016/j.jnutbio.2015.04.009

Tappy, L., Le, K.A., Tran, C., & Paquot, N. (2010). Fructose and metabolic diseases: new findings, new questions. Nutrition, 26 (11-12), 1044-1049. DOI: https://doi.org/10.1016/j.nut.2010.02.014

Torres-Villalobos, G., Hamdan-Pérez, N., Tovar, A., Ordaz-Nava, G., Martínez-Benítez, B., Torre-Villalvazo, I., Morán-Ramos, S., Díaz-Villaseñor, A., Noriega, L.G., Hiriart, M., Medina-Santillán, R., Castillo-Hernández, M.C., Méndez-Sánchez, M.U., & Torres, N. (2015). Combined high-fat diet and sustained high sucrose consumption promotes NAFLD in a murine model. Annals of Hepatology, 14(4), 540-546. DOI: https://doi.org/10.1016/S1665-2681(19)31176-7

Tryon, M.S., Stanhope, K.L., Epel, E.S., Mason, A.E., Brown, R., Medici, V., Havel, P.J., & Laugero, K.D. (2015). Excessive sugar consumption may be a difficult habit to break: a view from the brain and body. Journal of Clinical Endocrinology and Metabolism, 100(6), 2239-2247. DOI: https://doi.org/10.1210/jc.2014-4353

Weksler-Zangen, S., Jors, A., Tarsi-Chen, L., Vernea, F., Aharon-Hananel, G., Saada, A., Lenzen, S., & Raz, I. (2013). Dietary copper supplementation restores β-cell function of Cohen diabetic rats: a link between mitochondrial function and glucose-stimulated insulin secretion. American Journal of Physiology Endocrinology and Metabolism, 304(10), E1023-E1034. DOI: https://doi.org/10.1152/ajpendo.00036.2013

Yan, L., & Sundaram, S. (2018). A high-sucrose diet does not enhance spontaneous metastasis of Lewis lung carcinoma in mice. Nutrition Research, 58, 55-61. DOI: https://doi.org/10.1016/j.nutres.2018.07.001

Zamora, S., & Pérez F. Importance of sucrose in cognitive functions knowledge and behavior [Spanish]. (2013). Nutrition Hospitalary, 28(4), 106-111.

Zhi-Hong, Y., Miyahara, H., Takeo, J., & Katayama, M. (2012). Diet high in fat and sucrose induces rapid onset of obesity related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signaling and inflammation in mice. Diabetology & Metabolic Syndrome, 4(1), 32. DOI: https://doi.org/10.1186/1758-5996-4-32

Descargas

Publicado

2024-10-04

Cómo citar

Martínez Carrillo, B. E., Cruz Estrada, F. de M., Guadarrama López, A. L., García Rillo, A., & Pimentel Ramírez, M. L. (2024). Efectos sistémicos del consumo de sacarosa y su asociación con la respuesta inmunitaria: revisión sistemática: Systemic effects of sacarose consumption and its association with immune response: a systematic review. LATAM Revista Latinoamericana De Ciencias Sociales Y Humanidades, 5(5), 1802 – 1819. https://doi.org/10.56712/latam.v5i5.2744

Número

Sección

Ciencias Sociales