Evaluación crítica de sistemas citológicos en cáncer cervical: Revisión Bethesda y otros enfoques para diagnóstico eficaz
“Critical evaluation of cytological systems in cervical cancer: Review of Bethesda classification and other approaches for effective diagnosis”
DOI:
https://doi.org/10.56712/latam.v5i1.1666Palabras clave:
clasificación de bethesda, citología cervical, citología en medio líquido, pruebas de vph (virus del papiloma humano), diagnóstico de cáncer cervicalResumen
Este estudio analiza los sistemas de clasificación citológica en el diagnóstico del cáncer cervical, centrándose en la evolución de la clasificación de Bethesda y comparándola con enfoques emergentes. Se llevó a cabo una revisión exhaustiva de la literatura, abarcando datos desde la introducción de la Clasificación de Bethesda en 1988 hasta las revisiones más recientes. Se incluyó un análisis comparativo con otros sistemas y se evaluaron aspectos como sensibilidad, especificidad y aplicabilidad clínica. Se examinaron desafíos y limitaciones asociados con la Clasificación de Bethesda, como la ambigüedad en la interpretación de categorías y la variabilidad interobservador. Además, se exploraron desarrollos tecnológicos, como la citología en medio líquido y pruebas de VPH, destacando mejoras en la detección y eficiencia en el procesamiento de muestras. La comparación detallada reveló diferencias en la sensibilidad y especificidad entre la Clasificación de Bethesda y otros enfoques, destacando la adaptabilidad de los sistemas a nuevos avances científicos. Se resaltó la individualización del diagnóstico mediante biomarcadores y la integración de datos moleculares como enfoques prometedores. Se ofrecen recomendaciones para la práctica clínica y la investigación futura, subrayando la necesidad de enfoques más personalizados y la integración de tecnologías emergentes para mejorar la precisión diagnóstica en el cáncer cervical.
Descargas
Citas
Abbas, S., Lynn, T., Liu, H., Lin, F., Zhu, S., Massak, M., & Monaco, S. (2022). 218 Telecytology at Remote Sites with a Portable Digital Microscope & Slide Scanner: Comparison of Different Scanning Modalities. MODERN PATHOLOGY CYTOPATHOLOGY.
Alabrak, M., Megahed, M., Alkhouly, A., Mohammed, A., Elfandy, H., Tahoun, N., & Ismail, H. (2023). Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm. Asian Pacific Journal of Cancer Prevention, 24(4), 1379-1387. https://doi.org/10.31557/APJCP.2023.24.4.1379
Allahqoli, L., Laganà, A. S., Mazidimoradi, A., Salehiniya, H., Günther, V., Chiantera, V., Karimi Goghari, S., Ghiasvand, M. M., Rahmani, A., Momenimovahed, Z., & Alkatout, I. (2022). Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review. Diagnostics, 12(11), 2771. https://doi.org/10.3390/diagnostics12112771
Arbyn, M., Simoens, C., Buntinx, F., Martin-Hirsch, P. P., Paraskevaidis, E., & Prendiville, W. J. (2009). Triage with human papillomavirus (HPV) testing versus repeat cytology for underlying high-grade cervical intra-epithelial neoplasia in women with minor cytological lesions. En The Cochrane Collaboration (Ed.), Cochrane Database of Systematic Reviews (p. CD008054). John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD008054
Diniz, D. N., Rezende, M. T., Bianchi, A. G. C., Carneiro, C. M., Ushizima, D. M., De Medeiros, F. N. S., & Souza, M. J. F. (2021). A Hierarchical Feature-Based Methodology to Perform Cervical Cancer Classification. Applied Sciences, 11(9), 4091. https://doi.org/10.3390/app11094091
Gomes, M. L. D. S., Moura, N. D. S., Magalhães, L. D. C., Silva, R. R. D., Silva, B. G. S., Rodrigues, I. R., Sales, L. B. F., & Oriá, M. O. B. (2023). Systematic literature review of primary and secondary cervical cancer prevention programs in South America. Revista Panamericana de Salud Pública, 47, 1. https://doi.org/10.26633/RPSP.2023.96
Gullo, C. E., Dami, A. L. T., Barbosa, A. P., Marques, A. M. D. V., Palmejani, M. A., Lima, L. G. C. A. D., & Bonilha, J. L. (2012). Results of a control quality strategy in cervical cytology. Einstein (São Paulo), 10(1), 86-91. https://doi.org/10.1590/S1679-45082012000100018
Han, M., & Fan, F. (2023). Bethesda System for Reporting Thyroid Cytopathology–An Updated Review. Journal of Clinical and Translational Pathology, 000(000), 000-000. https://doi.org/10.14218/JCTP.2023.00005
Holmström, O., Linder, N., Kaingu, H., Mbuuko, N., Mbete, J., Kinyua, F., Törnquist, S., Muinde, M., Krogerus, L., Lundin, M., Diwan, V., & Lundin, J. (2021). Point-of-Care Digital Cytology With Artificial Intelligence for Cervical Cancer Screening in a Resource-Limited Setting. JAMA Network Open, 4(3), e211740. https://doi.org/10.1001/jamanetworkopen.2021.1740
Internationale Atomenergie-Organisation. (2013). Management of cervical cancer: Strategies for limited-resource centres; a guide for radiation oncologists. Internat. Atomic Energy Agency.
Jiang, H., Zhou, Y., Lin, Y., Chan, R. C., Liu, J., & Chen, H. (2023). Deep Learning for Computational Cytology: A Survey. Medical Image Analysis, 84, 102691. https://doi.org/10.1016/j.media.2022.102691
Jiang, P., Li, X., Shen, H., Chen, Y., Wang, L., Chen, H., Feng, J., & Liu, J. (2023). A systematic review of deep learning-based cervical cytology screening: From cell identification to whole slide image analysis. Artificial Intelligence Review, 56(S2), 2687-2758. https://doi.org/10.1007/s10462-023-10588-z
Jiao, W., Atwal, G., Polak, P., Karlic, R., Cuppen, E., PCAWG Tumor Subtypes and Clinical Translation Working Group, Al-Shahrour, F., Atwal, G., Bailey, P. J., Biankin, A. V., Boutros, P. C., Campbell, P. J., Chang, D. K., Cooke, S. L., Deshpande, V., Faltas, B. M., Faquin, W. C., Garraway, L., Getz, G., … Von Mering, C. (2020). A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11(1), 728. https://doi.org/10.1038/s41467-019-13825-8
Kojalo, U., Tisler, A., Parna, K., Kivite-Urtane, A., Zodzika, J., Stankunas, M., Baltzer, N., Nygard, M., & Uuskula, A. (2023). An overview of cervical cancer epidemiology and prevention in the Baltic States. BMC Public Health, 23(1), 660. https://doi.org/10.1186/s12889-023-15524-y
Koliopoulos, G., Nyaga, V. N., Santesso, N., Bryant, A., Martin-Hirsch, P. P., Mustafa, R. A., Schünemann, H., Paraskevaidis, E., & Arbyn, M. (2017). Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database of Systematic Reviews, 2018(7). https://doi.org/10.1002/14651858.CD008587.pub2
Li, X., Xiang, F., Zhao, Y., Li, Q., Gu, Q., Zhang, X., Chen, Z., Zhang, M., Wang, J., Liu, R., Kang, X., & Wu, R. (2023). Detection of cervical high-grade squamous intraepithelial lesions and assessing diagnostic performance of colposcopy among women with oncogenic HPV. BMC Women’s Health, 23(1), 411. https://doi.org/10.1186/s12905-023-02538-2
Liang, Y., Tang, Z., Yan, M., Chen, J., Liu, Q., & Xiang, Y. (2021). Comparison detector for cervical cell/clumps detection in the limited data scenario. Neurocomputing, 437, 195-205. https://doi.org/10.1016/j.neucom.2021.01.006
Lycke, K. D., Kahlert, J., Damgaard, R. K., Eriksen, D. O., Bennetsen, M. H., Gravitt, P. E., Petersen, L. K., & Hammer, A. (2023). Clinical course of cervical intraepithelial neoplasia grade 2: A population-based cohort study. American Journal of Obstetrics and Gynecology, 229(6), 656.e1-656.e15. https://doi.org/10.1016/j.ajog.2023.08.008
Massad, L. S., Einstein, M. H., Huh, W. K., Katki, H. A., Kinney, W. K., Schiffman, M., Solomon, D., Wentzensen, N., & Lawson, H. W. (2013). 2012 Updated Consensus Guidelines for the Management of Abnormal Cervical Cancer Screening Tests and Cancer Precursors. Journal of Lower Genital Tract Disease, 17(5).
Medina-Villaseñor, E. A., Oliver-Parra, P. A., Neyra-Ortiz, E., Pérez-Castro, A., & Sánchez-Orozco, J. R. (2014). Neoplasia intraepitelial cervical, análisis de las características clínico-patológicas. Gaceta Mexicana de Oncología, 13(1).
Mustafa, W. A., Ismail, S., Mokhtar, F. S., Alquran, H., & Al-Issa, Y. (2023). Cervical Cancer Detection Techniques: A Chronological Review. Diagnostics, 13(10), 1763. https://doi.org/10.3390/diagnostics13101763
Nazir, N., Sarwar, A., Saini, B. S., & Shams, R. (2023). A Robust Deep Learning Approach for Accurate Segmentation of Cytoplasm and Nucleus in Noisy Pap Smear Images. Computation, 11(10), 195. https://doi.org/10.3390/computation11100195
Pelegrina, B., Paytubi, S., Marin, F., Martínez, J. M., Carmona, Á., Frias-Gomez, J., Peremiquel-Trillas, P., Dorca, E., Zanca, A., López-Querol, M., Onieva, I., Benavente, Y., Barahona, M., Fernandez-Gonzalez, S., De Francisco, J., Caño, V., Vidal, A., Pijuan, L., Canet-Hermida, J., … Costas, L. (2023). Evaluation of somatic mutations in cervicovaginal samples as a non-invasive method for the detection and molecular classification of endometrial cancer. eBioMedicine, 94, 104716. https://doi.org/10.1016/j.ebiom.2023.104716
Perkins, R. B., Wentzensen, N., Guido, R. S., & Schiffman, M. (2023). Cervical Cancer Screening: A Review. JAMA, 330(6), 547. https://doi.org/10.1001/jama.2023.13174
Pileggi, C., Flotta, D., Bianco, A., Nobile, C. G. A., & Pavia, M. (2014). Is HPV DNA testing specificity comparable to that of cytological testing in primary cervical cancer screening? Results of a meta‐analysis of randomized controlled trials. International Journal of Cancer, 135(1), 166-177. https://doi.org/10.1002/ijc.28640
Ryvlin, J., Shin, J. H., Yassari, R., & De La Garza Ramos, R. (2023). Editorial: Artificial intelligence and advanced technologies in neurological surgery. Frontiers in Surgery, 10, 1251086. https://doi.org/10.3389/fsurg.2023.1251086
Shi, L., Yang, X., He, L., Zheng, C., Ren, Z., Warsame, J. A., Suye, S., Yan, L., Cai, H., Xiao, X., & Fu, C. (2023). Promoter hypermethylation analysis of host genes in cervical intraepithelial neoplasia and cervical cancers on histological cervical specimens. BMC Cancer, 23(1), 168. https://doi.org/10.1186/s12885-023-10628-5
Solomon, D. (2002). The 2001 Bethesda SystemTerminology for Reporting Results of Cervical Cytology. JAMA, 287(16), 2114. https://doi.org/10.1001/jama.287.16.2114
Suleiman, A. A., Yousafzai, A. K., & Zubair, M. (2023). Comparative Analysis of Machine Learning and Deep Learning Models for Groundwater Potability Classification. The 4th International Electronic Conference on Applied Sciences, 249. https://doi.org/10.3390/ASEC2023-15506
van Hemel, B. (s. f.). Innovative issues in clinical cytopathology.
Veloz, A. P. M. (2021). Cervical screening: Laboratories providing HPV testing and cytology services in the NHS Cervical Screening Programme—GOV.UK.
Wang, T., Zhang, H., Liu, Y., & Zhao, C. (2023). Updates in Cervical Cancer Screening Guidelines, The Bethesda System for Reporting Cervical Cytology, and Clinical Management Recommendations. Journal of Clinical and Translational Pathology, 000(000), 000-000. https://doi.org/10.14218/JCTP.2023.00004
Wilcox, L., Brewer, R., & Diaz, F. (2023). AI Consent Futures: A Case Study on Voice Data Collection with Clinicians. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW2), 1-30. https://doi.org/10.1145/3610107
Willows, K., Selk, A., Auclair, M.-H., Jim, B., Jumah, N., Nation, J., Proctor, L., Iazzi, M., & Bentley, J. (2023). 2023 Canadian Colposcopy Guideline: A Risk-Based Approach to Management and Surveillance of Cervical Dysplasia. Current Oncology, 30(6), 5738-5768. https://doi.org/10.3390/curroncol30060431
Workowski, K. A., Bachmann, L. H., Chan, P. A., Johnston, C. M., Muzny, C. A., Park, I., Reno, H., Zenilman, J. M., & Bolan, G. A. (2021). Sexually Transmitted Infections Treatment Guidelines, 2021. 70(4).
Yeung, K. (2019). A study of the implications of advanced digital technologies (including AI systems) for the concept of responsibility within a human rights framework.